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a b s t r a c t

The transient panel flutter of a cantilevered elastic and viscoelastic strip, with one end of the strip rigidly
fixed and the second end free, is investigated. It is assumed that the flow velocity vector is parallel to
the plane of the strip and, with its edges, makes an angle that can take arbitrary positive and negative
values. Approximate estimates of the critical flutter velocity are obtained by approximating the solution
by special polynomials, by a Laplace transform with respect to time and by Bubnov’s method.
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In the first investigations of the vibration and stability of a cantilevered strip, assuming motion of the strip in a gas flow in the direction
from the fixed end to the free end, the effect of divergence (cylindrical bending of the strip when a certain critical flow velocity is reached)
was discovered.1 Later, approximate values of the critical flutter and divergence velocity were obtained for a cantilevered strip under
conditions where the flow velocity vector was directed parallel to the plane of the strip and perpendicular to its edges.2 In investigations
of longitudinal flow along a cantilevered strip, the critical flutter velocity and the value of the corresponding wave formation parameter
were calculated for the case where the flow velocity vector was parallel to the plane and edges of the strip.†

Below, an approximate solution of the problem of the flutter of a cantilevered strip under conditions where the flow velocity vector
is parallel to its plane and, with the edges, makes an angle that can take arbitrary values in the range [−�/2, �/2] is constructed for
the first time. In all cases the approximate solution is based on linear combinations of polynomials that identically satisfy the boundary
conditions.

1. Formulation of the problem

We will first consider an infinite elastic strip that, in a rectangular system of coordinates, occupies the region 0 ≤ y ≤ l, |x| ≤ ∞. It is
assumed that one end of the strip (y = 0) is rigidly fixed, while the other (y = l) is free. Gas flows around the strip with a velocity vector
� = n0�, n0 = (cos �, sin �), and with the following fixed parameters: pressure p0, density �0 and sound velocity c0.

Under conditions where the excess pressure in the gas flow is defined by piston theory formulae, the vibrations of the strip are described
by the equation3

(1.1)

where D0 is the cylindrical stiffness, E0 is Young’s modulus, � and � are the density and Poisson’s ratio of the strip material, and � is the
polytropic exponent of the gas.
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Equation (1.1) is investigated under the cantilever boundary conditions

(1.2)

and with the initial data determined by the type of perturbation.
The problem consists of determining the lowest value of the flow velocity �* such that when � < �* the perturbed motion will be

asymptotically stable, and when � > �* it will be asymptotically unstable.
We will introduce the dimensionless coordinates x/l and y/l and the velocity M = �/c0 into Eqs. (1.1), retaining the previous notation for

the coordinates. In dimensionless coordinates, Eq. (1.1) takes the form

(1.3)

where the following notation is introduced

2. The structure of the approximate solution

We will choose the initial perturbation, bounded at infinity, in the form

Accordingly, for the deflection we will adopt the representation

in which each of the functions �k (y) satisfies the conditions

(2.1)

It is convenient to choose as �k (y) the set of polynomials

(2.2)

imposing on each of the functions �k(y) the boundary conditions. After substituting (2.2) into (2.1), we arrive at a system of linear equations
for determining the coefficients Ak, Bk and Ck:

(2.3)

where

It is not difficult to show that the determinant of system (2.3) is non-zero for any � ∈ [0, 0.5] and integers k ≥ 4. Since the coefficient Ck
can be specified in an arbitrary way, we will assume that Ck = 1/k!, and then, from system (2.3), we will obtain

3. Investigation of the stability of the solution

For the bending of the strip we will use the representation

(3.1)
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We substitute expressions (3.1) into Eq. (1.3) and apply a Laplace transformation with respect to time, taking into account the initial
conditions (s is the transformation parameter). As a result, we obtain the equation

(3.2)

in which the function Q(x, y) depends only on the initial data and the coefficients of the problem.
We multiply relation (3.2) by �m(y) (m = 4, 5, . . ., n) and integrate over the segment [0, 1]; we obtain a system of linear equations in the

unknown images G̃k(s)

(3.3)

The behaviour of the originals Gk(t) and the forms of motion of the strip depend on the zeros of the determinant of system (3.3), which
comprises a polynomial Pr(s) of power r = 2n − 6. The vibration of the strip will be asymptotically stable (decrease exponentially) if all the
complex roots of the polynomial are located in the left-hand half-plane. If any of the roots of the polynomial transfer into the right-hand
half-plane, the motion of the strip becomes asymptotically unstable. A case corresponding to the boundary of the regions of stability and
instability is one where, for one of the roots, the requirement Re sj = 0 is satisfied, provided all remaining roots are located in the left-hand
half-plane. The flutter velocity M̃ is related to these conditions. It depends on the wave-formation parameter �: by definition, for the critical
flutter velocity we assume that M∗ = M̃(�∗), and �* is found from the condition for the function M̃(�) to be a minimum.

4. An elastic strip

In longitudinal and transverse flow around the elastic strip, the behaviour of the approximate solutions containing polynomials up to
and including the ninth power was investigated. Specific calculations were carried out for the following values of the parameters

The values of the critical flutter velocity M* for longitudinal and transverse flow around the strip for various powers of the polynomial
n are given in Table 1.

The calculation results indicate good convergence of the approximation process. When � = 0 and � = �/2, the values of the critical flutter
velocity are practically identical with those obtained earlier.2 In Kudryavtsev’s dissertation, for the given critical flutter velocity and the
corresponding wave-formation parameter for longitudinal flow, the values A = a3M* ≈ 7.83 and �* ≈ 1.88 are obtained; according to the
results of the present paper, A ≈ 7.79 and �* ≈ 1.92.

When � = −�/2, when the flow velocity increases, the root s = 0 is the first to fall on the imaginary axis, while minimization of the flutter
velocity with respect to the wave-formation parameter leads to the value � = 0. Here, the critical velocity in terms of the reduced velocity
gives the value A = a3M* ≈ 6.33, which is in agreement with the result obtained earlier1 for the divergence.

Under conditions where the flow velocity vector makes an angle � with the edges of the strip, for the deflection an approximation was
chosen that contained a sixth-order polynomial:

(4.1)

The results of calculations are given below:

An analysis of the results of the calculations enables the following conclusions to be drawn.

Table 1

n � = 0, �* = 1.92 � = �/2, �* = 0 � = −�/2, �* = 0

5 0.06521 1.06848 0.05223
6 0.06520 1.14272 0.05300
7 0.06520 1.15895 0.05300
9 0.06520 1.15817 0.05300
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1. When � ∈ [0, �/2], as in the case of cantilevered strip, close to � = �/2 an angle �0 (7�/16 < �0 < 15�/32) exists, in the neighbourhood of
which the nature of the vibration of the strip changes. When � ∈ [0, �0], when � increases there is an increase in the values of the critical
velocity and in the corresponding values of the wave-formation parameter. When � ∈ [�0, �/2] there is a small reduction in the values
of M*, and here the parameter �* falls sharply to zero, with a sudden change at the point �0.

2. When the values of � decrease from 0 to −�/2, the critical flutter velocity initially decreases slightly, and then increases slightly to a
value corresponding to the angle �1 ∈ (−5�/18, −�/4). When � < �1, flutter gives way to divergence.

3. Further, when � ∈ [−�/2, �1], minimization of the critical velocity with respect to � leads to the value � = 0, the root s = 0 of polynomial
Pr(s) is the first to fall on the imaginary axis, and for the critical velocity and each angle � ∈ [−�/2, �1] the relation M∗(�)| sin �| = Mdiv is
satisfied, where Mdiv is the critical velocity of divergence when � = −�/2.

Thus, the lowest value of the critical flutter velocity is reached in the case of longitudinal or near-longitudinal flow (for small negative
values of � > −�/18) along the cantilevered strip. The divergent state and, together with it, cylindrical bending arise at � values considerably
greater than −�/2.

The fact that the M* values obtained above do not exceed unity, or are close to unity, does not play a special role – when the ratio
l/h decreases the values of the critical velocity increase, and here the general pattern of vibration found is retained, and the principal
conclusions remain unchanged.

5. A viscoelastic strip

We will assume that the material of the strip is linear viscoelastic:

We will write the equation of vibrations in the form4

(5.1)

The boundary conditions (1.2) remain as before.
For the deflection w we choose approximation (4.1), substitute this expression into (5.1) and take a Laplace transformation of the result.

We obtain the equation

The entire subsequent procedure of transformations and investigations of the stability of the solution are largely identical with those
in the previous section.

In the calculations it was initially assumed that the relaxation kernel contains one exponential term �(t) = exp(−	1t). Then, the deter-
minant of the corresponding system of linear equations can be written in the form � = R9(s)/(s + 	1)3, where R9(s) is a ninth-order
polynomial, and subsequent investigation of the stability depends on the motion of the roots of this polynomial.

The calculation results for the case when 
1 = 10−2, 	1 = 10−1 and l/h = 250 are given below:

where M0 is the critical flutter velocity, determined from the instantaneous modulus, �0 is the corresponding value of the wave-formation
parameter, and M* and �* are values of the critical flutter velocity and the wave-formation parameter for a viscoelastic strip.

These results enable the following conclusions to be drawn: when � ∈ [−7�/30, �/2] an analogy is observed with the results obtained
for a hinged viscoelastic strip,5 the critical flutter velocity of the viscoelastic strip is practically identical with the critical velocity calculated
from the instantaneous modulus, and here the corresponding values of the wave-formation parameter are similar or identical.

Investigation of the forms of motion indicates that, when M = 0, of the nine roots of the polynomial R9(s), six roots are pairwise conjugate
with identical real parts Re si ≈ −a1/(2a2) ≈ −26.52 (i = 1, . . ., 6) and different imaginary parts. Another three roots are real and roughly the
same: sj ≈ −0.0899 (j = 7, 8, 9). When the values of M increase, the given six conjugate roots become quasi-conjugate, and one of these roots,
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moving along a trajectory very similar to the trajectory of motion of the corresponding root in the elastic case, intersects the imaginary
axis in roughly the same region.

When M increases, the three real roots become complex, their real parts decrease very slightly and, when the critical flutter velocity is
reached, are displaced to the value −0.0900 and the imaginary parts of these roots vary in the range (10−6, 10−3).

An entirely different picture is observed in the case of divergence. We note first of all that the problem of flow along a cantilevered vis-
coelastic strip at an angle � = −�/2 allows of a more detailed investigation. Thus, assuming that, in general form, the following representation
holds for the deflection

(5.2)

where A(t) and �(y) are unknown functions of time and coordinate, we substitute expression (5.2) into Eq. (5.1) and carry out a Laplace
transformation. Then, for one exponential term in the relaxation kernel, we obtain the equation

where

Assuming s = 0 in the equation

we arrive at the relation

and, under conditions where � = 0, we obtain an equation of the form

which, apart from the notation, repeats the corresponding equation for a cantilevered elastic strip.1 Thus, if M1,div is the value of the
critical divergence velocity of an elastic strip at � = −�/2, then the critical divergence velocity M* of a viscoelastic strip is defined by the
equation M∗ = (1 − �1)M1,div, which corresponds to the limiting modulus. Approximate calculations largely confirm this conclusion, and
consequently, when � = −�/2, the critical velocity can be calculated as the limiting-modulus critical velocity.

Note that this conclusion holds for relaxation kernels that contain a finite number of exponential terms. For example, for the case where
the relaxation kernel contains four exponential terms with the parameters

the results of calculations in the case of longitudinal and transverse flow around the strip are given below (the previous qualitative
characteristics of the results are retained):

Since for a viscoelastic strip the critical divergence velocity at � = −�/2 is lower than the corresponding critical velocity in the elastic
case, it follows that the “divergent” state with cylindrical bending sets in earlier, i.e., at larger negative angles, than in the elastic case. Thus,
when � = −�/4, in the case of a cantilevered elastic strip a state of flutter is observed, whereas in the case of a cantilevered viscoelastic
strip a state of divergence is observed. Note that the forms of motion of a cantilevered viscoelastic strip when reaching “divergent” states
likewise differ from those described earlier. Now, when M increases, one of the three roots that, with M = 0, were positioned on the real
axis, is the first to fall on the imaginary axis.

6. Conclusions

The solution of the problem of the flutter of a cantilevered strip in the form of a linear combination of specially constructed polynomials,
which is convenient in calculations, yields a result with sufficient accuracy. It was shown that, for any non-negative angles of flow, as the
flow velocity increases there is instability in the form of the flutter with a characteristic travelling wave along the strip. For negative angles
of flow, either flutter or divergence is observed. Here, a fundamentally new mechanical effect was found: an entire sector of directions
(from −�/4 to −�/2) exists for which increase in the flow velocity leads to a divergent state.

For a cantilevered viscoelastic strip, approximate values of the critical flutter velocity were found, on the assumption that the material
of the strip is linear viscoelastic, and the relaxation kernel contains exponential terms. Here, the flutter values of the critical velocity are
similar to the corresponding values of the elastic problem with an instantaneous Young’s modulus, whereas in the case of divergence the
values of the critical velocity can differ considerably from the corresponding values for an elastic strip.
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Under conditions when the flow velocity vector makes an angle of −�/2 with the edges of the strip, i.e., it is directed from the free edge
of the strip to the fixed end, it has been proved theoretically that the critical divergence velocity is equal to the limiting-modulus critical
velocity for a viscoelastic strip.

Finally, note that the equation of vibration of a strip in the present paper is based on the formula from piston theory for the pressure of
aerodynamic interaction �p. At the same time, it is well known that the applicability of piston theory is open to question at low supersonic
flow velocities. A number of studies have recently appeared in which the use of a “non-piston” approach in investigating the flutter problem
has led to essentially new results; above all, Refs 6 and 7 must be mentioned, and also Refs 8 and 9. Nevertheless, from our point of view,
calculations using the piston theory make sense when they are being conducted for the first time.
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